Journal of Medicinal Chemistry

© Copyright 1999 by the American Chemical Society

Volume 42, Number 22

November 4, 1999

Communications to the Editor

Pyrazolo[4,3-*e*]-1,2,4-triazolo[1,5-*c*]pyrimidine Derivatives as Highly Potent and Selective Human A₃ Adenosine **Receptor Antagonists**

Pier Giovanni Baraldi,*,§ Barbara Cacciari,§ Romeo Romagnoli,§ Giampiero Spalluto,† Karl-Norbert Klotz,[∥] Edward Leung,[▽] Katia Varani,[‡] Stefania Gessi,[‡] Stefania Merighi,[‡] and Pier Andrea Borea[‡]

Dipartimento di Scienze Farmaceutiche and Dipartimento di Medicina Clinica e Sperimentale-Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, I-44100 Ferrara, Italy, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Trieste, Piazzale Europa 1, I-34127 Trieste, Italy, Institut für Pharmakologie, Universität of Würzburg, D-97078 Würzburg, Germany, and Medco Research, Research Triangle Park, North Carolina 27709 Received July 1, 1999

Introduction. Adenosine modulates many physiological functions through activation of four known receptor subtypes, classified as A₁, A_{2A}, A_{2B}, and A₃.^{1,2} The adenosine A_1 and A_{2A} receptor subtypes have been pharmacologically characterized through the use of selective ligands.³

The adenosine A₃ receptor was initially cloned from a rat testis cDNA library.⁴ Subsequently, A₃ receptors have been cloned from human,^{5,6} sheep,⁷ mouse,⁸ and rabbit.⁹ Considerable differences in sequence homology (72%) for the A₃ receptors have been observed between species.^{10,11} Affinities for antagonist ligands also showed differences between species. For these reasons, the hypothesis of the existence of two different adenosine A₃ receptor subtypes has been proposed. However different A₃ receptor subtypes within a single species have not yet been demonstrated.¹²

The adenosine A₃ receptor appears to be responsible for many physiological effects, but in some cases the observed responses to chronic agonist and antagonist exposure are the exact opposite to the predicted effects based on short-term exposure to these agents.¹²

Activation of adenosine A₃ receptors has been shown to stimulate phospholipase C13 and D14 and to inhibit adenylate cyclase.³ Activation of A₃ adenosine receptors also causes the release of inflammatory mediators such as histamine from mast cells.^{11,15} These mediators are responsible for processes such as inflammation¹⁰ and hypotension.¹¹ It has also been suggested that the A₃ receptor plays an important role in brain ischemia,^{16,17} immunosuppression,¹⁸ and bronchospasm in several animal models.19

Taking into account these results, highly selective A_3 adenosine receptor antagonists have been indicated as potential drugs for the treatment of asthma and inflammation.^{10,20}

In the past few years, different classes of compounds have been reported to be A3 adenosine receptor antagonists. Four classes of compounds with non-xanthine structures have been synthesized: dihydropyridine and pyridine analogues,²¹⁻²⁴ flavonoid,^{25,26} isoquinoline,²⁷⁻²⁸ and triazoloquinazoline derivatives.²⁹⁻³⁰

In the latter class of compounds, Jacobson and coworkers,²⁹ started from the experimental observation that the 5-amino-9-chloro-2-2-furyl[1,2,4]triazolo[1,5c]quinazoline (CGS15943) possesses affinity for the human A_3 adenosine receptor (K_i h A_3 14 nM). In fact, by its acylation with a phenylacetyl group at the amino function at the 5-position was obtained MRS 1220 (1), the most potent but not highly selective A₃ adenosine receptor antagonist reported in the literature.

In the past few years, we have synthesized a large series of pyrazolo[4,3-*e*]-1,2,4-triazolo[1,5-*c*]pyrimidine

^{*} Correspondence to: Prof. Pier Giovanni Baraldi. Phone: +39-(0)-

^{532-291293.} Fax: +39-(0)532-291296. E-mail: pgb@dns.unife.it. [§] Dipartimento di Scienze Farmaceutiche, Ferrara.

[†] Università degli Studi di Trieste. ^{II} Universität of Wüzburg.

⁷ Medco Research.

[‡] Dipartimento di Medicina Clinica e Sperimentale, Ferrara.

Chart 1. Rational Design of hA_3 Adenosine Receptor Antagonists

derivatives of general formula **2**, structurally related to CGS15943, which turned out to be potent and selective A_{2A} antagonists.^{31–34} In addition, several N^6 -(substituted phenylcarbamoyl)adenosine-5'-uronamides of general formula **3** have been reported to act as potent agonists for the rat A_3 adenosine receptor subtype (Chart 1).^{35,36} Specifically, we observed that the introduction of the 3-chlorophenyl and 4-methoxyphenyl moieties gave the best results in terms of affinity at rat A_3 receptors (K_i 4.4 and 6.6 nM, respectively).

On this basis, we decided to link the amino group at the 5-position, of compounds of general formula **2**, with the two bulky substituents (3-chlorophenylcarbamoyl and 4-methoxyphenylcarbamoyl moieties), which displayed the best results in the field of A_3 agonists, ^{35,36} in an attempt to modulate the affinity and the selectivity at the human A_3 receptors. (Chart 1). Maintaining the substituents on the phenyl ring (3-chloro or 4-methoxy) at the 5-position, the effects of the lipophilic groups, such as small alkyl and aralkyl moieties, on the pyrazole nitrogen of the synthesized hybrid molecules of general formula **4** have been evaluated.

Chemistry. Compounds **5–12** were prepared following the general synthetic strategy summarized in Schemes 1 and 2. Compounds **5–12** were synthesized according to a well-known procedure for the synthesis of the pyrazolo[4,3-*e*]-1,2,4-triazolo[1,5-*c*]pyrimidines.³²

Alkylation of 5-amino-4-cyanopyrazole (**13**) with the appropriate alkyl halide in dry dimethylformamide led to an approximately 1:4 mixture of N^1 and N^2 regioisomers (**14**-**17**) as an inseparable mixture, used for the following steps without any further purification (Scheme 1).³²

Pyrazoles 14–17 were transformed into the corresponding imidates 18–21 through refluxing in triethyl orthoformate. The imino ethers 18–21 were reacted

with 2-furoic hydrazide in refluxing 2-methoxyethanol to provide the pyrazolo[3,4-*d*]pyrimidine intermediates. These were converted through a thermally induced cyclization in diphenyl ether to the desired derivatives **22**–**25** in good overall yield (50–63%), after separation of N⁷ (minor product) and N⁸ (major product) regioisomers by flash chromatography.³²

Hydrolysis with aqueous 10% HCl afforded the aminotriazoles **26–29**, which were in turn converted into the 5-amino-8-(substituted)-2-(2–furyl)pyrazolo[4,3-*e*]-1,2,4-triazolo[1,5-*c*]pyrimidine derivatives **30–33**. The final compounds **5–12** were obtained by a coupling reaction of derivatives **30–33** with the commercially available isocyanates **34** and **35** (Scheme 2).³⁵

The coupling reaction with isocyanates was successful using N⁸ alkylated compounds, but it failed in the case of the N⁷ pattern of substitution (classic A_{2A} antagonists; e.g. 5-amino-7-(2–phenylethyl)-2-(2–furyl)pyrazolo[4,3*e*]-1,2,4-triazolo[1,5-*c*]pyrimidine, SCH 58261), probably due to the less nucleophilic character of the amino group at the 5-position. In fact, the nitrogen lone pair of the 5-amino group in N⁷ derivatives is highly delocalized on the heterocyclic ring. This does not happen in the case of the N⁸ derivatives, because the relative mesomeric structures do not allow the same degree of delocalization.

Results and Discussion. Table 1 gives the receptor binding affinities of compounds **5–12** and the corresponding N⁵-unsubstituted derivatives **30–33** determined at rat A₁ and A_{2A} receptors and human A₃ receptors expressed in HEK-293 cells, using [³H]-1,3dipropyl-8-cyclopentylxanthine ([³H]DPCPX),³⁷ [³H]-5amino-7-(2–phenylethyl)-2-(2–furyl)pyrazolo[4,3-*e*]-1,2,4triazolo[1,5-*c*]pyrimidine ([³H]SCH 58261),³⁸ and [¹²⁵I]- N^{6} -(4–amino–3–iodobenzyl)-5'-(*N*-methylcarbamoyl)adenosine ([¹²⁵I]AB-MECA)³⁹ as radioligands, respectively.

Compounds lacking the phenylcarbamoyl moiety at the N⁵ position show high affinity for the A_{2A} receptor with low selectivity versus the A₁ receptor and are inactive at human A₃ adenosine receptor subtypes. As expected, compounds with the greatest affinity at the A_{2A} receptors, **32** and **33**, have the 2-phenylethyl and 3-phenylpropyl chains, respectively, at the pyrazole nitrogen, typical of A_{2A} antagonists. These derivatives are the regioisomers of two of the most potent previously reported A_{2A} antagonists: SCH 58261 and 5-amino-7-(3-phenylpropyl)-2-(2-furyl)pyrazolo[4,3-*e*]-1,2,4-triazolo[1,5-*c*]pyrimidine (SCH 63390).³³

On the contrary, when the substituted phenylcarbamoyl chain is present at the N⁵ position, all the synthesized derivatives 5-12 show high affinity to human A₃ receptors with a high degree of selectivity versus the other receptor subtypes. In particular the 4-methoxyphenylcarbamoyl moiety (compounds 5, 7, 9, 11) appears to confer higher affinity to the human A₃ receptor than the 3-chlorophenylcarbamoyl chain (compounds 6, 8, 10, 12) with a difference of about 2-10orders of magnitude.

It is evident that small chains such as ethyl and propyl on N^8 of the pyrazole afford compounds with high affinity and selectivity. In particular, compound **5**, with the ethyl group at the N^8 pyrazole combined with the 4-methoxyphenylcarbamoyl moiety at the N^5 -position,

Scheme 1^a

^{*a*} Reagents: (i) NaH, DMF, RX; (ii) HC(OEt)₃, reflux; (iii) 2-furoic hydrazide, MeO(CH₂)₂OH; (iv) Ph₂O, 260 °C, flash chromatography; (v) HCl, reflux; (vi) NH₂CN, 1-methyl-2-pyrrolidone, pTsOH, 140 °C.

Scheme 2^a

^a Reagents: (i) THF, reflux, 12 h.

shows the best binding profile with a high human A_3 affinity (K_i 0.28 nM) and selectivity versus A_1 and A_{2A} receptors, higher than 35 000. This derivative could be considered, at present, the most potent and selective hA₃ antagonist ever synthesized. The same degree of affinity, even with a decrease of selectivity, has been observed in compounds with a propyl substituent at N⁸ (e.g. compound **7** hA₃ 0.29 nM, rA₁/hA₃ > 34 000, rA_{2A}/ hA₃ 6 872). Significant differences have been observed when the phenylethyl and phenylpropyl chains were introduced; in fact, a reduction of affinity of about 10–100-fold is evident (e.g. compound **7** hA₃ 19.81 nM).

Earlier experiments using cloned A_1 and A_{2A} human adenosine receptors have shown a significant decrease in selectivity for many ligands whith respect to rat A_1 and A_{2A} receptors.⁴⁰ In this study, all the synthesized compounds have been tested on human $A_{1,4^{11}}$ human $A_{2A,3^{8}}$ and rat $A_{3}^{25a,42}$ adenosine receptors, to verify the selectivity in the same species (Tables 2, 3).

It is clearly evident, from the results shown in Table 2, that in the human species, these compounds show an increase in affinity of about 10-fold at human A_1 and A_{2A} receptors, with a consequent decrease of selectivity for A_3 receptors. Nevertheless, all the N⁵-substituted compounds (5–12) retain good A_1/A_3 and A_{2A}/A_3 ratios

of selectivity. In particular, the most potent compound at human A₃ receptors of this series (**5**) showed again a high level of selectivity versus other receptor subtypes (>3 000). On the contrary, in a rat model (Table 3), all the compounds proved to be almost inactive showing different percentages of inhibition (1–40%) of specific binding at a concentration of 10 μ M. These results are in accordance with the low degree of sequence homology (72%) of the A₃ adenosine receptor subtypes.^{10,11} All the synthesized compounds were also found to be functional antagonists in a specific functional model where the inhibition of cAMP generation by IB-MECA was measured in membranes of CHO cells stably transfected with the human A₃ receptor (Table 4).⁴³

As expected, all the derivatives are antagonists with different degrees of potency. Compounds **30–33**, with the free amino group at the 5-position, as observed in binding studies, showed poor activity, inhibiting the effect of 100 nM IB-MECA in a range of 3-40% at 1 μ M concentration. On the contrary, the N⁵-substituted compounds (**5–12**) were more potent in the functional assay than unsubstituted derivatives (**30–33**). In particular, the most potent derivatives in binding studies inhibit the effect of IB-MECA at 1 μ M concentration from 50% to 88%, displaying IC₅₀ values in the nanomolar range (4.5–15.1 nM).

Table 1. Binding Affinity at rA1, rA2A and hA3 Adenosine Receptors of Compounds 5–12 and 30–33

compd	R	\mathbb{R}^1	$rA_1 (K_i, nM)^a$	$rA_{2A} (K_i, nM)^b$	$hA_3 (K_i, nM)^c$	rA1/hA3	rA _{2A} /hA ₃
1, MRS 1220 ^d			52.7 ± 11.8	10.3 ± 3.7	0.65 ± 0.25	81	16
30	C_2H_5	Н	95.09	11.15	3579	0.03	0.003
			(86.76 - 104.22)	(9.84 - 12.63)	(3376-3793)		
5	C_2H_5	4-MeO-Ph-NHCO	>10000	>10000	0.28	>35714	>35714
					(0.25 - 0.32)		
6	C_2H_5	3-Cl-Ph-NHCO	2699	2799	2.09	1291	1339
			(2521–2889)	(2621–2989)	(1.9 - 2.31)		
31	<i>n</i> -C ₃ H ₇	Н	139	20.23	613	0.22	0.03
_	a		(107 - 181)	(16.14 - 25.36))	(582-646		
7	$n-C_3H_7$	4-MeO-Ph-NHCO	>10000	1993	0.29	>34482	6872
•	0.11		1700	(1658-2397)	(0.27 - 0.32)	0000	
8	$n-C_3H_7$	3-CI-Ph-NHCO	1582	>10000	0.49	3228	>20408
00		11	(1447 - 1730)	0.70	(0.47 - 0.52)	0.0007	0.0000
3Z	$Pn-CH_2-CH_2$	Н	2.10	(0.70)	2/85	0.0007	0.0002
0	Dh CH, CH	4 Man Dh NHCO	(1.9-2.47)	(0.55-0.91)	(2403-3149)	079	051
3	F II-CI 12-CI 12	4-MeO-FII-MICO	(11/8 - 1/32)	(1995 - 1504)	(1.92 - 1.78)	012	951
10	Ph-CHo-CHo	3-Cl-Ph-NHCO	1049	1698	13.28	79	128
10		0 01 1 11 11100	(961 - 1145)	(1524 - 1892)	(10.20)	10	120
33	Ph-CH ₂ -CH ₂ -CH ₂	Н	11.13	0.59	2666	0.004	0.0002
		••	(9.34 - 13.27)	(0.44 - 0.81)	(2533 - 2805)	01001	010002
11	Ph-CH2-CH2-CH2	4-MeO-Ph-NHCO	1514	>10000	19.81	76.4	>504
			(1332 - 1721)		(17.61 - 22.27)		
12	Ph-CH ₂ -CH ₂ -CH ₂	3-Cl-Ph-NHCO	>10000	3200	42.65	>234	75
				(3025 - 3385)	(39.92 - 45.57)		

^{*a*} Displacement of specific [³H]DPCPX binding (A₁) in rat brain membranes (n = 3-6). ^{*b*} Displacement of specific [³H]SCH 58261 binding (A_{2A}) in rat striatal membranes. ^{*c*} Displacement of specific [¹²⁵I]AB-MECA binding at human A₃ receptors expressed in HEK-293 cells. Data are expressed as geometric means, with 95% confidence limits. ^{*d*} Values taken from ref 30.

Table 2. Binding Affinity	y at hA1, hA2A, and	hA ₃ Adenosine Rece	ptors of Compound	ds 5–12 and 30–3 3
---------------------------	---------------------	--------------------------------	-------------------	----------------------------------

-		-	-		
compd	$hA_1 (K_i, nM)^a$	$hA_{2A} (K_i, nM)^b$	$hA_3 (K_i, nM)^c$	hA ₁ /hA ₃	hA _{2A} /hA ₃
30	5.00	1.90	3579	0.0014	0.0005
	(4.05-6.20)	(1.72 - 2.09)	(3376-3793)		
5	1026	1045	0.28	3664	3732
	(785 - 1341)	(834 - 1309)	(0.25 - 0.32)		
6	249	185	2.09	119	88.5
	(215-289)	(159 - 214)	(1.9 - 2.31)		
31	10	2.55	613	0.016	0.004
	(7-14)	(1.91 - 3.39)	(582-646)		
7	1197	141	0.29	4127	486
	(1027-1396)	(123–161)	(0.27-0.32)		
8	30	1221	0.49	61	2491
	(23-40)	(882-1689)	(0.47-0.52)		
32	1.00	0.31	2785	0.0003	0.0001
	(0.66 - 1.51)	(0.20-0.48)	2463-3149)		
9	201	124	1.47	136	84.3
	(172-236)	(100-155)	(1.22 - 1.78)		
10	251	110	13.28	19	8.2
	(229-276)	(93-130)	(10.87-16.23)		
33	3.00	0.18	2666	0.001	0.00006
	(2.65 - 3.39)	(0.07-0.50)	(2533-2805)		
11	251	1015	19.81	12.6	51.2
	(221-286)	(885-1163)	(17.61 - 22.27)		
12	1500	202	42.65	35.1	4.7
	(1325-1693)	(11-216)	(39.92 - 45.57)		

^{*a*} Displacement of specific [³H]DPCPX binding at human A₁ receptors expressed in CHO cells (n = 3-6). ^{*b*} Displacement of specific [³H]SCH 58261 binding at human A_{2A} receptors expressed in HEK-293 cells. ^{*c*} Displacement of specific [¹²⁵I]AB-MECA binding at human A₃ receptors expressed as geometric means, with 95% confidence limits.

From these experimental observations, it is possible to hypothesize that the characteristic aralkyl chains of A_{2A} antagonists are not optimal for A_3 receptor interaction, while small chains present the ideal, steric and probably lipophilic, characteristics for the interaction with the human adenosine A_3 receptor subtype. **Conclusions.** The present study provides useful information concerning the structural requirements necessary for recognition by the A_3 adenosine receptor. It confirms that a substituted phenylcarbamoyl moiety confers affinity and selectivity for the A_3 adenosine receptor subtype at the pyrazolo[4,3-*e*]-1,2,4-triazolo[1,5-

Table 3. Binding Affinity at hA_3 and rA_3 Adenosine Receptors of Compounds 5-12 and 30-33

compd	rA ₃ ^a (% inhibn)	$hA_3 (K_i, nM)^b$
30	1	3579
		(3376 - 3793)
5	39	0.28
		(0.25 - 0.32)
6	36	2.09
		(1.9 - 2.31)
31	2	613
		(582 - 646)
7	37	0.29
		(0.27 - 0.32)
8	20	0.49
		(0.47 - 0.52)
32	12	2785
		(2463 - 3149)
9	37	1.47
		(1.22 - 1.78)
10	30	13.28
		(10.87 - 16.23)
33	32	2666
		(2533 - 2805)
11	11	19.81
		(17.61 - 22.27)
12	20	42.65
		(39.92-45.57)

^a Displacement of specific [¹²⁵I]AB-MECA binding at rat A₃ receptors expressed in CHO cells; data are expressed as percentage of inhibition of specific binding at a concentration of 10 mM. ^b Displacement of specific [¹²⁵I]AB-MECA binding at human A₃ receptors expressed in HEK-293 cells; data are expressed as geometric means, with 95% confidence limits.

Table 4. Functional Assay: Percentage of Blockade by 1 μ M of Each Compound **30–33** and **5–12** of the Inhibition by 100 nM IB-MECA-Inhibited cAMP Accumulation in CHO Cells Expressing hA₃ Adenosine Receptors^{*a*}

compd	% inhibn	IC ₅₀ (nM)		
30	3 (2-7)			
5	88 (79-97)	6.5 (3.7-11.2)		
6	71 (61-81)	15.1 (9.9-23.0)		
31	43 (30-61)	40.2 (32.7-49.3)		
7	89 (79-100)	4.5(3.7-5.5)		
8	87 (76-99)	5.3(3.2 - 8.9)		
32	5 (3-7)			
9	81 (75-89)	12.4 (8.0-19.2)		
10	62 (43-75)			
33	6 (3-10)			
11	56 (37-7.1)			
12	50 (34-72)			

 a For compounds **5–8** and **31**, IC₅₀ values are also shown. Values are the means of at least three experiments, and in parentheses the 95% confidence limits are shown.

c]pyrimidine nucleus, while the N⁵-unsubstituted derivatives lacks both affinity and selectivity for human A₃ receptors, showing high affinity for A₁ and/or A_{2A} receptor subtypes. When the pyrazolo[4,3-*e*]-1,2,4-triazolo[1,5-*c*]pyrimidine nucleus is substituted at the N⁸-position with small alkyl groups, higher affinity and selectivity at the human A₃ receptors was observed. When the N^{8} -ethyl and N^{5} -4-methoxyphenylcarbamoyl substitutions were combined, the most potent and selective human A₃ adenosine antagonist (**5**) was obtained ($K_{1} = 0.28$ nM, rA₁/hA₃ > 35 000, rA_{2A}/hA₃ > 35 000, hA₁/hA₃ > 3 600, hA_{2A}/hA₃ > 3 600).

In addition, the results herein presented and our previous studies^{31–33} allow us to propose the pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine nucleus as a possible template for generating adenosine receptor subtype-selective ligands. In fact, it is quite evident that

modifications of the substituents at N⁵-, N⁷-, and N⁸positions could modulate both affinity and selectivity for the different adenosine receptor subtypes.

Acknowledgment. We thank Medco Research, Triangle Park, NC, for financial support and Dr. Ken A. Jacobson, NIH, Bethesda, MD, for a preliminary binding assay of a couple of reference compounds on hA_3 adenosine receptors.

Supporting Information Available: Experimental details. This information is available free of charge via the Internet at http://pubs.acs.org.

References

- Fredholm, B. B.; Abbracchio, M. P.; Burnstock, G.; Daly, J. W.; Harden, T. K.; Jacobson, K. A.; Leff, P.; Williams, M. Nomenclature and classification of purinoceptors. *Pharmacol. Rev.* 1994, 46, 143–156.
- (2) Olah, M. E.; Stiles, G. L. Adenosine receptor subtypes: characterization and therapeutic regulation. Annu. Rev. Pharmacol. Toxicol. 1995, 35, 581–606.
- (3) Jacobson, K. A.; Suzuki, F. Recent developments in selective agonists and antagonists acting at purine and pyrimidine receptors. *Drug. Dev. Res.* **1996**, *39*, 289–300.
- (4) Meyerhof, W.; Muller-Brechlin, R.; Richter, D. Molecular cloning of a novel putative G-protein coupled receptor expressed during rat spermiogenesis. *FEBS Lett.* **1991**, *284*, 155–160.
- (5) Sajjadi, F. G.; Firestein, G. S. cDNA cloning and sequence analysis of the human A_3 adenosine receptor. *Biochim. Biophys. Acta* **1993**, *1179*, 105–107.
- (6) Salvatore, C. A.; Jacobson, M. A.; Taylor, H. E.; Linden, J.; Johnson, R. G. Molecular cloning and characterization of the human A₃ adenosine receptor. *Proc. Natl. Acad. Sci. U.S.A.* **1993**, *90*, 10365–10369.
- (7) Linden, J. Cloned adenosine A₃ receptors: Pharmacological properties, species differences and receptor functions. *Trends Pharmacol. Sci.* **1994**, *15*, 298–306.
- (8) Zhao, Z. H.; Ravid, S.; Ravid, K. Chromosomal mapping of the mouse A₃ adenosine receptor gene, adora3. *Genomics* **1995**, *30*, 118–119.
- (9) Hill, R. J.; Oleynek, J. J.; Hoth, C. F.; Kiron, M. A.; Weng, W. F.; Wester, R. T.; Tracey, W. R.; Knight, D. R.; Buchholz, R.; Kennedy, S. P. Cloning, expression and pharmacological characterization of rabbit A₁ and A₃ receptors. *J. Pharmacol. Exp. Ther.* **1997**, *280*, 122–128.
- *Ther.* 1997, *280*, 122–128.
 (10) Linden, J.; Taylor, H. E.; Robeva, A. S.; Tucker, A. L.; Stehle, J.; Rivkees, S. A.; Fink, J. S.; Reppert, S. M. Molecular cloning and functional expression of a sheep A₃ adenosine receptor with widespread tissue distribution. *Mol. Pharmacol.* 1993, *44*, 524–532.
- (11) Hannon, J. P.; Pfannkuche, H. J.; Fozard, J. R. A role for mast cells in adenosine A₃ receptor-mediated hypotension in the rat. *Br. J. Pharmacol.* **1995**, *115*, 945–952.
- (12) Jacobson, K. A. Adenosine A₃ receptors: novel ligands and paradoxical effects. *Trends Pharmacol. Sci.* **1998**, *19*, 184–191.
- (13) Abbracchio, M. P.; Brambilla, R.; Kim, H. O.; von Lubitz, D. K. J. E.; Jacobson, K. A.; Cattabeni, F. G-protein-dependent activation of phospholipase-C by adenosine A₃ receptor in rat brain. *Mol. Pharmacol.* **1995**, *48*, 1038–1045.
- (14) Ali, H.; Choi, O. H.; Fraundorfer, P. F.; Yamada, K.; Gonzaga, H. M. S.; Beaven, M. A. Sustained activation of phospholipase-D via adenosine A₃ receptors is associated with enhancement of antigen-ionophore-induced and Ca²⁺-ionophore-induced secretion in a rat mast-cell line. *J. Pharmacol. Exp. Ther.* **1996**, *276*, 837–845.
- (15) van Schaick, E. A.; Jacobson, K. A.; Kim, H. O.; IJzerman, A. P.; Danhof, M. Haemodynamic effects and histamine release elicited by the selective adenosine A₃ receptor agonists 2-Cl–IB-MECA in conscious rats. *Eur. J. Pharmacol.* **1996**, *308*, 311–314.
- (16) von Lubitz, D. K. J.; Carter, M. F.; Deutsch, S. I.; Lin, R. C. S.; Mastropaolo, J.; Meshulam, J.; Jacobson, K. A. The effects of adenosine A₃ receptor stimulation on seizures in mice. *Eur. J. Pharmacol.* **1995**, *275*, 23–29.
 (17) von Lubitz, D. K. J. V.; Lin, R. C. S.; Popik, P.; Carter, M. F.;
- (17) von Lubitz, D. K. J. V.; Lin, R. C. S.; Popik, P.; Carter, M. F.; Jacobson, K. A. Adenosine A₃ receptor stimulation and cerebral ischemia. *Eur. J. Pharmacol.* **1994**, *263*, 59–67.
- (18) Mackenzie, W. M.; Hoskin, D. W.; Blay, J. Adenosine inhibits the adhesion of anti-CD3-activated killer lymphocytes to adenocarcinoma cells through an A_3 receptor. *Cancer Res.* **1994**, *54*, 3521–3526.

- (19) Meade, C. J.; Mierau, J.; Leon, I.; Ensinger, H. A. In vivo role of the adenosine A₃ receptor-N⁶-2-(4-aminophenyl)ethyladenosine induces broncospasm in bde rats by a neurally mediated mechanism involving cells resembling mast cells. *J. Pharmacol. Exp. Ther.* **1996**, *279*, 1148–1156.
- (20) Ramkumar, V.; Stiles, G. L.; Beaven, M. A.; Ali, H. The A₃ adenosine receptors is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. *J. Biol. Chem.* **1993**, *268*, 16887–16890.
- (21) van Rhee, A. M.; Jiang, J.-L.; Melman, N.; Olah, M. E.; Stiles, G. L.; Jacobson, K. A. Interaction of 1,4-dihydropyridine and pyridine derivatives with adenosine receptors: selectivity for A₃ receptors. *J. Med. Chem.* **1996**, *39*, 2980–2989.
 (22) Jiang, J.-L.; van Rhee, A. M.; Melman, N.; Ji, X.-D.; Jacobson, K. A. M.; Melman, M.; Ji, X.-D.; Jacobson, K. A. M.; Melman, M.; Ji, X.-D.; Jacobson, M. M.; Melman, M.; Ji, X.-D.; Jacobson, M. M.;
- (22) Jiang, J.-L.; van Rhee, A. M.; Melman, N.; Ji, X.-D.; Jacobson, K. A. 6-Phenyl-1,4-dihydropyridine derivatives as potent and selective A₃ adenosine receptor antagonists. *J. Med. Chem.* **1996**, *39*, 4667–4675.
- (23) Jiang, J.-L.; van Rhee, A. M.; Chang, L.; Patchornik, A.; Ji, X.-D.; Evans, P.; Melman, N.; Jacobson, K. A. Structure–activity relationships of 4-(phenylethynyl)-6-phenyl-1,4-dihydropyridines as highly selective A₃ adenosine receptor antagonists. *J. Med. Chem.* **1997**, 40, 2596–2608.
- (24) (a) Li, A.-H.; Moro, S.; Melman, N.; Ji, X.-D.; Jacobson, K. A. Structure–activity relatioships and molecular modeling of 3,5diacyl-2,4-dialkylpyridine derivatives as selective A₃ adenosine receptor antagonists. *J. Med. Chem.* **1998**, *41*, 3186–3201. (b) Li, A.-N.; Moro, S.; Forsyth, N.; Melman, N.; Ji, X.-D.; Jacobson, K. A. Synthesis, ComFA analysis and receptor docking of 3,5diacyl-2,4-dialkylpyridine derivatives as selective A₃ adenosine receptor antagonists. *J. Med. Chem.* **1999**, *42*, 706–721.
- (25) (a) Ji, X. D.; Melman, N.; Jacobson, K. A. Interactions of flavonoid and other phytochemicals with adenosine receptors. *J. Med. Chem.* **1996**, *39*, 398–406. (b) Karton, Y.; Jiang, J.-L.; Ji, X.-D.; Melman, N.; Olah, M. E.; Stiles, G. L.; Jacobson, K. A. Synthesis and biological activities of flavonoid derivatives as A₃ adenosine receptor antagonists. *J. Med. Chem.* **1996**, *39*, 2293–2301.
- (26) Moro, S.; van Rhee, A. M.; Sanders, L. H.; Jacobson, K. A. Flavonoid derivatives as adenosine receptor antagonists: a comparison of the hypothetical receptor binding site based on a comparative molecular field analysis model. *J. Med. Chem.* **1998**, *41*, 46–52.
- (27) van Muijlwijk-koezen, J. E.; Timmerman, H.; Link, R.; van der Goot, H.; IJzerman, A. P. A novel class of adenosine A₃ receptor ligands. 1. 3-(2-pyridinil)isoquinoline derivatives. *J. Med. Chem.* **1998**, *41*, 3987–3993.
- (28) van Muijlwijk-koezen, J. E.; Timmerman, H.; Link, R.; van der Goot, H.; IJzerman, A. P. A novel class of adenosine A₃ receptor ligands. 2. Structure affinity profile of a series of isoquinoline and quinazoline compounds. *J. Med. Chem.* **1998**, *41*, 3994– 4000.
- (29) Kim, Y. C.; Ji, X. D.; Jacobson, K. A. Derivatives of the triazoloquinazoline adenosine antagonist (CGS15943) are selective for the human A₃ receptor subtype. *J. Med. Chem.* 1996, *39*, 4142–4148.
- (30) Kim, Y. C.; de Zwart, M.; Chang, L.; Moro, S.; Jacobien, K.; Frijtag, D. K.; Melman, N.; IJzerman, A. P.; Jacobson, K. A. Derivatives of the triazoloquinazoline adenosine antagonist (CGS15943) having high potency at the human A_{2B} and A₃ receptor subtypes. *J. Med. Chem.* **1998**, *41*, 2835–2845.
 (31) Baraldi, P. G.; Manfredini, S.; Simoni, D.; Zappaterra, L.; Zocchi,
- (31) Baraldi, P. G.; Manfredini, S.; Simoni, D.; Zappaterra, L.; Zocchi, C.; Dionisotti, S.; Ongini, E. Synthesis and activity of new pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine and 1,2,3-triazolo [4,5-e]-1,2,4-triazolo[1,5-c]pyrimidine displaying potent and selective activity as A_{2A} adenosine receptor antagonists. *Bioorg. Med. Chem. Lett.* **1994**, *4*, 2539–2544.

- (32) Baraldi, P. G.; Cacciari, B.; Spalluto, G.; Borioni, A.; Viziano, M.; Dionisotti, S.; Ongini, E. Current developments of A_{2A} adenosine receptor antagonists. *Curr. Med. Chem.* **1995**, *2*, 707– 722.
- (33) Baraldi, P. G.; Cacciari, B.; Spalluto, G.; Pineda de Las Infantas y Villatoro, M. J.; Zocchi, C.; Dionisotti, S.; Ongini, E. Pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives: Potent and selective A_{2A} adenosine antagonists. *J. Med. Chem.* **1996**, *39*, 1164–1171.
- (34) Baraldi, P. G.; Cacciari, B.; Spalluto, G.; Bergonzoni, M.; Dionisotti, S.; Ongini, E.; Varani, K.; Borea, P. A. Design, synthesis and biological evaluation of a second generation of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as potent and selective A2A adenosine receptor antagonists. *J. Med. Chem.* **1998**, *41*, 2126–2133.
- (35) Baraldi, P. G.; Cacciari, B.; Spalluto, G.; Ji, X.-D.; Olah, M. E.; Stiles, G.; Dionisotti, S.; Zocchi, C.; Ongini, E.; Jacobson, K. A. Novel N6-(substituted-phenylcarbamoyl)adenosine-5'-uronamides as potent agonists for A₃ adenosine receptors. *J. Med. Chem.* **1996**, *39*, 802–806.
- (36) Baraldi, P. G.; Cacciari, B.; Pineda de Las Infantas, M. J.; Romagnoli, R.; Spalluto, G.; Volpini, R.; Costanzi, S.; Vittori, S.; Cristalli, G.; Melman, N.; Park, K.-S.; Ji, X.-D.; Jacobson, K. A. Synthesis and biological activity of a new series of N⁶-arylcarbamoyl, 2-(Ar)alkynyl-N⁶-arylcarbamoyl, and N⁶-carboxamido derivatives of adenosine-5'-N-ethyluronamide as A₁ and A₃ adenosine receptor agonists. *J. Med. Chem.* **1998**, *41*, 3174– 3185.
- (37) Lohse, M. J.; Klotz, K.-N.; Lindernborn-Fotinos, J.; Reddington, M.; Schwabe, U.; Olsson, R. A. 8-Cyclopentyl 1–3dipropylxanthine DPCPX a selective high affinity antagonist radioligand for A₁ adenosine receptors. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1987**, *336*, 204–210.
- (38) Zocchi, C.; Ongini, E.; Ferrara, S.; Baraldi, P. G.; Dionisotti, S. Binding of the radioligand [³H]-SCH58261, a new nonxanthine A_{2A} adenosine receptor antagonist, to rat striatal membranes. *Br. J. Pharmacol.* **1996**, *117*, 1381–1386.
- (39) Varani, K.; Cacciari, B.; Baraldi, P. G.; Dionisotti, S.; Ongini, E.; Borea, P. A. Binding affinity of adenosine receptor agonists and antagonists at human cloned A₃ adenosine receptors. *Life Sci.* **1998**, *63*, 81–87.
- (40) Klotz, K. N.; Hessling, J.; Hegler, J.; Owman, C.; Kull, B.; Fredholm, B. B.; Lohse, M. J. Comparative pharmacology of human adenosine receptor subtypes- characterization of stably transfected receptors in CHO cells. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1998**, *357*, 1–9.
- (41) Klotz, K. N.; Cristalli, G.; Grifantini, M.; Vittori, S.; Lohse, M. J. Photoaffinity labeling of A₁ adenosine receptors. *J. Biol. Chem.* **1985**, *260*, 14659–14664.
- (42) Olah, M. E.; Gallo-Rodriguez, C.; Jacobson, K. A.; Stiles, G. L. ¹²⁵I-4-Aminobenzyl-5'-N-methylcarboxamidoadenosine, a high affinity radioligand for the rat A₃ adenosine receptors. *Mol. Pharmacol.* **1994**, *45*, 978–982.
- (43) Varani, K.; Gessi, S.; Dionisotti, S.; Ongini, E.; Borea, P. A. [³H]-SCH 58261 Labeling of functional A_{2A} adenosine receptors in human neutrophil membranes. *Br. J. Pharmacol.* **1998**, *123*, 1723–1731.

JM991114S